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Outline

• Natural language processing (NLP) and linguistics

• The RiPLes project: collecting and enriching IGT data
§ Joint work with William Lewis and Ryan Georgi

• The AGGREGATION project: Inferring grammars from the enriched IGT 
§ Joint work with Emily Bender, Michael Goodman, Olga Zamaraeva, and Kristen 

Howell
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Early NLP: rule-based approach
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Parsing

John saw a man with a telescope
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Syntax  vs. Parsing

Parsing:  John saw a man with a telescope

Syntax:  It does not have any deep feeling.
               *It has any deep feeling. 
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Parsing: Rule-based approach
• Steps: 

• Choose a framework: e.g., CFG, LTAG, HPSG, LFG, CCG
• Build a grammar in that framework
• Use the grammar to parse a test suite and check the parse trees
• Revise the grammar to improve coverage  and reduce ambiguity

• Advantages:
§ Intuitive and linguistically motivated:    S => NP VP
§ Can capture generalization: e.g.,  agreement between subject and verb

• Disadvantages:
§ Require linguistic expertise:   e.g., build a grammar for Arabic/Urdu/Farsi/Chintang
§ Long development cycle: many person years
§ Not  robust:

Ø “Ungrammatical” sentences: repair, errors, corruption 
Ø Unknown words, new constructions, novel usage

§ Rules are not good at handling ambiguity:  John saw a man with a telescope 
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Current NLP: statistical/neural approach
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Parsing using Neural Networks: 
an example from (Chen and Manning, 2014)



My research interest
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Outline

• Natural Language Processing (NLP) and linguistics

• The RiPLes project
§ Motivation
§ ODIN: Collecting language data from the Web
§ INTENT: Enrich the data

• The AGGREGATION project



Low-resource languages

• There are more than 7000 living languages in the world.

• 90% of them are likely to go extinct or become seriously threatened 
in the next 100 years (Krauss, 1992).

• Most languages are low resource: some with millions of speakers, 
while others with only a few native speakers left.

 
• We know very little about most of these languages.
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In the linguistics field

• Ethnologue covers more than 7,000 living languages (Gordon, 2005): info 
under several categories (e.g., countries, population, language code)

• The World Atlas of Language Structures (WALS) : a large database of structural 
properties of languages
§ 144+ features: e.g., what is the word order of a language
§ 2670+ languages, 55+ authors
§ Among all possible  (feat, lang) pairs, about 15% of them are specified by the 

authors.



Motivation: Linguistics

• Questions:
§ For a particular language:

vWhat is word order: SVO, SOV, VSO, ….?
vDoes this language allow long-distance scrambling?

§ For cross-language study:
vFind all the languages that allow long-distance scrambling and examples in those langs
vImplicational universal:  if determiners follow nouns, then relative clauses will also follow 

nouns. Is it always true? If not,  find exceptions.

• How can we automate the process of locating data and answering these 
questions? 



Motivation: NLP

• Goal: to create tools (e.g., parsers) for many languages

• Most  common approach:  supervised learning 
§ Problem: Creating labeled data (e.g., treebanks) can be very expensive.
§ Solution: unsupervised learning with unlabeled data, transfer learning

• A small amount of linguistic knowledge often helps a lot:
§  Ex: Prototypes  (e.g., NP è Det  N)  for grammar 

induction:  26.3%  to  65.1%  for English  (Haghighi and 
Klein, 2006):

• Question: How can we acquire the knowledge automatically 
for hundreds of languages? 



In the NLP field

• Idea: Take advantage of existing resources for resource-rich languages

• Common approaches:
§ Use bitext and syntactic projection:

§ Use word alignment and then project information from one language to another
§ Issue: Many resource-poor languages do not have a lot of bitext.
è We use Interlinear Glossed Text (IGT), and study structural divergence. 

§ More recently, many studies on transfer learning with neural network.



Interlinear glossed text (IGT)

Rhoddodd  yr    athro     lyfr    i’r       bachgen ddoe
Gave-3sg   the   teacher book  to-the  boy        yesterday
The teacher gave a book to the boy yesterday
(Welsh,  from (Bailyn 2001))

è ODIN is a collection of IGT 
    (Online Database of INterlinear glossed text)
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The RiPLes Project

• RiPLes  stands for “information engineering and synthesis for 
Resource-Poor Languages”

• Main components: 
• ODIN: extract IGT data from linguistic documents
• INTENT: enrich IGT data and use it to bootstrap NLP systems



Building ODIN (Lewis and Xia, 2010)

• Crawling the Web for documents that contain IGT

• IGT detection: locate IGT within the document

• Language ID: determine the language name/code for each IGT

• Manual check: final check before the release of ODIN
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A  linguistic document

Reconsidering structural case in Finnish
                                   Dieter Wunderlich

This paper is a response to Kiparsky (2000), who convincingly argues that the 
complex case marking in Finnish can  …

…..   The genitive is also blocked in the imperative construction, shown in (1b), as 
well as in the passive….

(1)   a. Tuo-n häne-t             /  karhu-n   /    karhu-t  /    karhu-j-a.
         bring-1  sg (s)he-ACC /  bear-GEN  /  bear-pl.NOM  /  bear-pl-PART
         `I'll bring him/her / a/the  bear/ the bears / bears'
        b. Tuo    häne-t /     karhu           /   karhu-t /        karhu-j-a.
          bring   (s)he-ACC / bear-NOM /   bear-pl.NOM / bear-pl-PART
         `Bring him/her / a/the bear / the bears / bears!’
On the basis of the fact that bounded ….
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Crawling the Web
• Intuition: documents that contain the following tend to contain 

IGT:
§ Grams: e.g., -NOM (nominative) , -ACC (accusative)

§ Language names and language codes: e.g., Finnish, Malagasy
ØDrawn from the Ethnologue database (Gordon, 2005)

§ Linguists’ names and the languages that they work on: e.g., 
Kiparsky
ØDrawn from the Linguist List’s linguist database (linguistlist.org)

• Try  different combinations of terms from these categories:
§ Ex:  NOM+ACC+Finnish
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IGT detection
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IGT detection: rule-based approach

(1)   a. Tuo-n häne-t             karhu-n  /  karhu-t  / karhu-j-a.
         bring-1  sg (s)he-ACC  bear-GEN / bear-pl.NOM / bear-pl-PART
         ‘I'll bring him/her   a/the   bear/ the bears / bears'

Regular expression:
    \s* \(\d+\)  .*
    .+
     \s*  [\`|\``|\“] .+  [\’|\’’|\”]  .*
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Difficulty in IGT detection

[DP [D0 Ku] [AGRP [Adj ketaran] AGR0 [NP namwu]]]

a.
            the             big               tree
      (Kim, 1997)

• Two-part IGT
• Extra annotations and structure
• Pdf-to-txt conversion noise
• ...
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Applying NLP techniques to IGT detection

• Treat IGT detection as a sequence labeling problem.

• Label each line in a document with a BIO label: 
§ B: the 1st line in an IGT
§ I: inside an IGT
§ E: the last line in an IGT
§ O: outside IGT

• Convert a tag sequence into IGT sequences by simple heuristics: 
• Ex: Any “B I* E” sequence is treated as an IGT instance.
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Experiments

• Cues (aka “features”):
§ tokens  that appear on the current line: e.g., -ACC
§ whether the current line starts an example number
§ whether the current line starts with a quotation mark
§ whether the current line and the previous line have similar indentation
§ …

• Training data: 41 files with 1573 IGT

• Test data:        10 files with  447 IGT

• Results:  
§ Exact match:   88.38%    vs.    51.40%  (RegEx)
§ Partial match: 95.40%  vs.    74.58%  (RegEx)
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Language ID (Xia et al, 2009)
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Differences from a typical language ID task

• Large number of languages: 1000+ 

• Unseen languages: 10% of IGTs in the test data belong to unseen languages

• Very limited amount of training data:  no more than 10 words per language for 
45.3% of languages

• …. 

èTextCat (Cavnar and Trenkle’s algorithm): 
        99.8%  on 8 languages => 51.4% on ODIN data



Use of language code

• A language can have multiple names:
– Ex: “aaa” => Alumu, Tesu, Arum, Alumu-Tesu, Alumu, Arum-Cesu, Arum-Chessu, and 

Arum-Tesu

• A language name can refer to multiple languages:
– Ex: Tiwa (Sino Tibetan) and Tiwa (Tanoan)
– Ex: “Macrolanguages”: e.g., Chinese, Quechua

• We use language codes, because each language code maps to exactly one 
language.

• Our system will output both language code and language name.



Language tables

6% of language names in the merged table are ambiguous.

The table is not complete:
•  Dozens of languages (e.g., Early High German) do not have language codes.
•  More than 900 (code, name) pairs are missing from the table 
 (e.g.,  Aroplokep vs. Arop-Lukep)



Language ID
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Treating language ID as a coreference  task

• Coreference task:
§ Ex:  Bryan called Alisa.  He found her book.
§ A language name is like a proper noun.
§ An IGT is like a pronoun.

• Unseen languages are no longer a problem.

• All the existing algorithms on coreference in the NLP field 
can be applied to the task.



Experiments

• Features:
– The language names that appear close to the current IGT
– Word/character ngrams in the current IGT vs. ngrams for a language in the training 

data
– Word/character ngrams in the current IGT vs. ngrams in other IGTs in the same 

document

• Data set: 1160 documents (90% training, 10% testing)

• Results:
– 85.1% (CoRef) vs. 51.4% (TextCat)
– with less training data: 81.2% (CoRef) vs. 28.9% (TextCat)
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ODIN database (before manual correction)

The IGT is extracted from 3,000 documents.



ODIN database (after manual correction)

The IGT is extracted from 2025 documents.

ODIN v2.1 is at https://uakari2.ling.washington.edu/corpus/odin/v2_1/09384dc6/



Outline

• Natural Language Processing (NLP) and linguistics

• The RiPLes project
§ Motivation
§ ODIN: Collecting language data from the Web
§ INTENT: Enrich the IGT data

• The AGGREGATION project



Gave-3sg  the teacher book  to-the boy yesterday

The teacher gave a book to the boy yesterday

Enriching IGT: Align three lines

Rhoddodd   yr      athro     lyfr       i’r    bachgen    ddoe



Enriching IGT: parse the translation and 
project the parse tree



Translation divergence
• Dorr (1994) outlines seven types of divergence that may occur 

between languages. 

è What are common divergence types and can they be detected automatically?



Alignments that cause divergence

(1) Unaligned words (2) many-to-one alignment

(3) head switching



“Remove” operation for unaligned words

remove l



“Merge” operation for many-to-one alignment

merge j and l 



“Swap” operation for head switching

swap j and l



Transforming a tree pair with three operations

• Input:
§ tree pair (S, T)
§ word alignment between words in S and T

• Output:  transformed tree pair (S’, T’)

• Steps:
§ For unaligned words in S and T,  apply “Remove”
§ For many-to-one alignment, apply “Merge”
§ For head switching, apply “Swap”



Unaligned words

Figure: The trees for “Mohan caused Mina to be given a book through Arif yesterday” and its Hindi counterpart



After removing unaligned words



Many-to-one alignment



After applying the “merge” operation



Improving syntactic projection 
(Georgi et al., 2014)
• Syntactic projection is error-prone due to language divergence

• To study divergence:
§ We define a metric to compare structural similarity between a treebank pair
§ We identify three common divergence types and define a tree operation for each type
§ Experiments demonstrate the effect of these operations on matching percentage

• Improve projection accuracy:
§ Learn divergence patterns from a small training corpus (a parallel treebank which can come from 

enriched IGT) 
§ Apply the patterns to the output of the basic projection algorithm

• The whole process is automatic and does not require language-specific knowledge.



Automatically answer linguistic questions 
(Lewis and Xia, 2008)

Q1 Q2
…

L1

L2

…

ODIN

WALS (World Atlas of Language Structures)



Enriching IGT: parse the translation and 
project the parse tree



Extracting context-free rules

S è VBD NP-SBJ NP-OBJ PP NP-TMP
NP-SBJ  è DT NN
NP-OBJ è NN
PP è IN+DT NN



Extracted context-free grammar

• S è V NP-SBJ NP-OBJ               0.40
• S è V NP-SBJ                             0.30
• S è V NP-SBJ NP-OBJ PP         0.10
• ...

• NP è DT NN                              0.51
• NP è NN                                    0.26
• NP è ADJ NN                             0.13
• …

è  The language seems to be VSO, and the order between DT and NN is DT-NN. 



Answering questions in language profile 

• From WALS (Haspelmath et al.,  2005)
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Experiment  #1

Parameter               Accuracy
WOrder 90%
VP-OBJ 60%
DT-NN 80%
Dem-NN 90%
JJ-NN 100%
PRP$-NN 80%
Poss-NN 70%
P-NP 90%
number 70%
case 80%
T/A 80%
Def 100%
Indef 90%

Average 83%
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Experiment  #2

• Project Structures for 97 languages

• Determine value of  the word order parameter for each language 
(e.g., SVO, SOV, etc.)

• How much data is required for accurate answers?
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Results

• Accuracy:  For 69 of the 97 languages, WOrder was 
accurately determined
• Confusion matrix:

 

SVO SOV VSO VOS
SVO 32 8 0 9
SOV 2 33 0 6
VSO 2 2 3 4
VOS 0 0 0 1

System output

Truth
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Results for Experiment #2
• Accuracy improved as # of IGT instances increased



Error analysis 

• Insufficient Data  
§ Ex:  most VSO languages had less than 10 instances. 

• Skewed or Inaccurate Data:  (a.k.a.  IGT bias)
§ Ex: Cantonese is SVO and had over 73 instances in ODIN, but  one source had a large 

number of skewed SOV instances.

• Projection  errors:  (a.k.a. English bias)
§ A combination of  errors in English parse tree, word alignment, and projection  

• Free Constituent Order:
§ Free word order is more difficult to assign a value to than a fixed word order.
§ Even with “Fixed” Word Order languages, word order can be flexible (and degree can 

be flexible cross-linguistically)
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What the results show
• We can fairly accurately discern values for several typological 

parameters.

• Larger samples overcome the effects of the IGT bias and the 
English bias.

• We can do this across many languages automatically.
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The AGGREGATION project

• The LinGO Grammar Matrix (Bender et al., 2002) is cross-linguistic 
grammar resource designed to facilitate the creation of machine-
readable, linguistically motivated grammars for any human language.
§ A core grammar and a series of libraries 
§ A customization system

• Goals of the AGGREGATION project:
• To generate grammar (fragments) automatically using information from IGT 

and other types of language data
• To bring the benefits of grammar engineering to descriptive and documentary 

linguists.



Grammar Matrix customization page
http://matrix.ling.washington.edu/customize/matrix.cgi

Word order:



Enriched IGT

• Original IGT: Language line, gloss line, translation line

• Enriched IGT:
• words and morphemes in the language line 
• Words and morphemes in the gloss line
• Words in the translation line
• Alignment between words (and morphemes) in the language line and gloss line 
• Alignment between the words in the gloss line and the translation line

• Part-of-speech (POS) tags for the words in the translation line
• Phrase structure (PS) and dependency structure (DS) for the translation line
• Projected POS tags for the words in the language line
• Projected PS and DS for the language line



XIGT: an eXtensible representation for IGT 
(Goodman et al, 2015)
• Properties of IGT:
• Stand-off: the ability to deploy an annotation without changing the original 

data
• Incrementality: allowing for incremental development of analyses
• Extensibility: easy to add additional annotation “tiers”
• Complex alignments: allow complex alignments between annotation tiers
• ID-reference annotation: 
• …

• For more info and source code, see https://github.com/xigt/xigt



AGGREGATION:



Case studies

• Inferring case systems (Howell et al., 2017)

• Computational support for finding word classes in Abui (Zamaraea et 
al., 2017)

• Study lexical classes in Chintang (Zamaraea et al., 2019)

• Extracting typological and lexical properties (Howell, 2020)



Conclusion

• NLP and linguistics are closely related, and we are interested in 
exploring ways that the two fields can benefit each other.

• RiPLes is a project that uses NLP techniques to 
§ collect IGT data from the Web è ODIN database
§ project information from resource-rich languages to resource-poor 

languages  è enriched IGT
§ create language profiles (e.g., grammar fragments) from the enriched 

IGT
§ Use enriched IGT to bootstrap NLP tools (e.g., parsers) to process 

more language data
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Conclusion (cont)

• The AGGREGATION project:
§ Built on top of RiPLes and LINGO Grammar Matrix projects
§ XIGT was proposed as a data format to store enriched IGT.
§ The main component is grammar inference (e.g., word order, case system, 

lexical classes).
§ The output of the system can help descriptive and documentary linguists.

• NLP can help linguistic studies:
• NLP can be used to collect and enrich language data
• Enriched data can be used to infer linguistic information or to bootstrap NLP 

systems so that more data can be processed automatically.



More information

• ODIN v2.1 download: 
https://uakari2.ling.washington.edu/corpus/odin/v2_1/09384dc6/

• ODIN and XIGT source code: https://github.com/xigt

• A demo for an IGT Editor: http://editor.xigt.org/user/demo

• AGGREGATION: http://depts.washington.edu/uwcl/aggregation/

https://uakari2.ling.washington.edu/corpus/odin/v2_1/09384dc6/
https://github.com/xigt
http://editor.xigt.org/user/demo
http://depts.washington.edu/uwcl/aggregation/
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